Probability Mass Functions

Psychology 3256

Introduction

- You can plot the probability of any given score for a variable
- $p($ all events $)=1$
- area under the curve $=1$

Die roll

1.167
0.875
0.292

The Normal Distribution

- bell shaped

Why is this useful?

- Many variables are assumed to be normal in the population
- Therefore we can use standard techniques
- Sampling distributions are normal (CLT)

$$
\bar{x} \rightarrow N\left(\mu_{x}, \sigma / \sqrt{n}\right)
$$

properties

$$
\begin{gathered}
p(3<x<7)= \\
\text { area between } \\
f(3) \text { and } f(7)
\end{gathered}
$$

The area under a curve

- Well in this case that is pretty easy, just simple geometry
- If it is not a common shape, well, then umm, who here has taken calculus?

$$
\int_{x=3}^{x=7} f(x)
$$

But I don't know calculus!

- Well, that's your loss
- Sucks to be you

Meanwhile, back at the normal distribution

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}}(e)^{-(x-\mu) / 2 \sigma^{2}}
$$

- So you just take the integral of the function
- Say you want the probability of an IQ between 95 and 107 you just take the integral, easy!

OK, it can be made a little easier

- If we make the mean 0 and the variance I (a standard normal distribution) we then get a somewhat simpler equation

$$
f(x)=\frac{1}{\sqrt{2 \pi}}(e)^{-(x) / 2}
$$

Still....

- Basically this is why we
standardize our data using the z distribution to make it $\mathrm{N}(0, \mathrm{I})$

$$
\begin{aligned}
& z=\frac{x-\mu}{\sigma} \\
& z=\frac{95-100}{15}=-.32 \\
& z=\frac{107-100}{15}=.466 \\
& p(-.32<z<.466)=.310
\end{aligned}
$$

Someone did the calculus for you

- So now you can just look it up in a z table
- or, you can use this handy dandy web tool
- http://www.davidmlane.com/hyperstat/ z_table.html

Normal Distribution
Above
BelowBetween -0.32 and 0.466Outside -1
or 1
Shaded area: 0.304908

Conclusions

- Some poor person did the calculus for you
- We now just look it up in a table, or we use a handy web tool like I showed you
- This is not that scary, you already know how to do this, but now you know WHY

