Factorial ANOVA

Psychology 3256

Made up data..

- Say you have collected data on the effects of Retention Interval on memory
- So, you do the ANOVA and

conclude that RI affects memory

Made up data 2..

- What about

Levels of
Processing?

- So, you do the ANOVA and conclude that LOP affects
 memory

Hmmm

- What level of RI should you have done your LOP experiment at?
- For that matter, what level of LOP should you have done the RI experiment at?

Combine ‘em

	5 min	I hr	24 hr
Low	GI	G2	G3
Med	G4	G5	G6
High	G7	G8	G9

Here comes the model

A effect

A bit more explanation

- So, not only can we look at A and B, we also look at how A and B act together, how they interact
- Sort of a whole is more than the sum of its parts thing
- The effect of I variable changes depending upon the level of some second variable

picture $=1000($ words $)$
 - BI
 - B2

20

- The difference between BI and B2 is smaller at A2 than it is at A2
- The effect of B changes depending upon the level of A

5

0

Meanwhile, back at the structural model...

- $x=\mu+\alpha+\beta+\alpha \beta+\varepsilon$
- Assumptions (model)
- $\Sigma \alpha_{i}=0$
- $\Sigma \beta_{j}=0$
- $\Sigma \alpha_{i} \beta=0$
- $\varepsilon \operatorname{NID}\left(0, \sigma^{2}\right)$

Assumptions for F

- Homogeneity of variance
- random samples
- normal populations

Numerical example

- $x=\mu+\alpha+\beta+\alpha \beta+\varepsilon$
- take out the grand mean
- $(9+7+3+1) / 4=20 / 4=5$

Subtract 5 out of each cell

- So with the grand mean removed we can go on to the effects of A and B
- BI $6 / 2=3$
- $\mathrm{B} 2-6 / 2=-3$

	Al	A2	sum
B I	4	2	6
B2	-2	-4	-6

Subtract 3 from the Bls and -3 from the B2s

- AI I
- A2-I
- Now do the same as before but for the As

	$A 1$	$A 2$
B I	I	-1
$B 2$	I	$-I$
sum	2	-2

And we are left with

- Well with nothing, so there is no interaction, just a mean and effects of A and B

Graph it

4.50
2.25
0.00

Another example

- OK, first get the grand mean $(20+0-10+2) / 4=3$
- Now, we remove the grand mean

Out comes the grand

mean

- The A effect is 2 for AI and -2 for A2
- Note how they always sum to 0

	AI	A2
BI	17	-3
B2	-13	-1
sum	4	-4

Take out 2 from Al and -2 from A2

- OK, notice how the cells sum to 0 (the grand mean is gone) AND so do the columns, as we have taken out A
- So for B we have BI 7 B2 -7

- Well take it out

What is left is the interaction

- So we have an interaction
- Note that the effects sum to 0 in every possible way
- if it was just 0s we would have no
 interaction

Graph it

$$
0 \mathrm{BI}
$$

- B2

Interpreting interactions

- Be careful when you are interpreting main effects in the presence of interactions
- Not so bad with an ordinal interaction
- harder with a disordinal interaction, probably impossible really

Partitioning the df and SS

- remember the model
- $x=\mu+\alpha+\beta+\alpha \beta+\varepsilon$
- SSTO $=$ SSA + SSB + SSAB+SSE

Think of it this way

- SSA
- Squared deviations of column means from grand mean
- SSB
- Squared deviations of row means from grand mean

Keep thinking....

- SSAB
- Squared deviations of cell means from what we would expect given row and column means
- SSE
- Squared deviations of individual scores from cell means

More Precisely...

$$
\begin{aligned}
& \sum\left(x-\bar{x}_{g}\right)^{2}=n q \sum\left(\bar{x}_{j-}-\bar{x}_{g}\right)^{2}+n p \sum\left(\bar{x}_{i}-\bar{x}_{g}\right)^{2}+n \sum \sum\left(x-\bar{x}_{j}-\bar{x}_{i}+\bar{x}_{g}\right)^{2}+\sum \sum \sum\left(\bar{x}_{i j}-\bar{x}_{g}\right)^{2} \\
& \begin{array}{llll}
N-1 & a-1 & b-1 & \overline{(a-1)(b-1)} \quad \overline{a b(n-1)}
\end{array}
\end{aligned}
$$

Expected values

- Remember for the simple ANOVA the $E(M S T)=\varepsilon+T$ and the $E(M S E)=\varepsilon$ so we would divide MST by MSE to find out if we had an effect
- Well we have to do the same thing for MSA MSB and MSAB (and of course MSE)

Here you go, as you would expect

- $E(M S A)=\alpha+\varepsilon$
- $E(M S B)=\beta+\varepsilon$
- $E(M S A B)=\alpha \beta+\varepsilon$
- $E(M S E)=\varepsilon$
- so divide them all by MSE to sort of isolate the effect

However....

- Those expected values are only for the case where you are only interested in the particular values of A and B that you have in your experiment, no others!
- This is called a Fixed effect model
- What if we randomly chose the levels?

Random effects model

- $E(M S A)=\alpha+\alpha \beta+\varepsilon$
- $E(M S B)=\beta+\alpha \beta+\varepsilon$
- $E(M S A B)=\alpha \beta+\varepsilon$
- $E(M S E)=\varepsilon$
- So divide MSA and MSB by MSAB and MSAB by MSE

Mixed model, A fixed, B

 random- $E(M S A)=\alpha+\alpha \beta+\varepsilon$
- $E(M S B)=\beta+\varepsilon$
- $E(M S A B)=\alpha \beta+\varepsilon$
- $E(M S E)=\varepsilon$
- No, that is not a typo.. and yes it is counterintuitive

So....

- We are assuming with a random effects model that the levels of the random factor are randomly selected and independent of each other
- Really, we are usually doing a random effects or mixed model, sort of...
- Did you really randomly select the levels?

ANOVA summary table

Source of Variation	df	MS	F
A	a-l	SSA/(a-I)	MSA/MSE
B	b-I	SSB(b-I)	MSB/MSE
AB	(a-l)(b-I)	$\begin{array}{\|c\|} \hline \text { SSAB/ } \\ (\mathrm{a}-\mathrm{I})(\mathrm{b}-\mathrm{I}) \end{array}$	MSAB/MSE
Error	$\mathrm{ab}(\mathrm{n}-\mathrm{I})$	$\begin{gathered} \hline \text { SSE/ } \\ \mathrm{ab}(\mathrm{n}-\mathrm{I}) \\ \hline \end{gathered}$	$Y_{\text {IVIXIEND }}$
TOTAL	$\mathrm{N}-\mathrm{I}$		Wililiect

You can make these designs bigger!

	Cl	CI	C2	C2
	Al	A2	A1	A2
BI	G1	G2	G5	G6
B2	G3	G4	G7	G8

Now....

- Now you have 3 main effects (A B and C)
- 3 two way interactions (AB AC and BC)
- and a 3 way interaction (ABC)
- when a 2 way interaction changes depending on the level of some third variable

The model now is..

$$
\bullet x=\mu+\alpha+\beta+\gamma+\alpha \beta+\alpha \gamma+\beta \gamma+\alpha \beta \gamma+\varepsilon
$$

Looks like this

$$
0 \mathrm{Al} \quad 0 \mathrm{~A} 2 \quad 0 \mathrm{Al} \quad 0 \mathrm{~A} 2
$$

Advantages of these designs

- We can study interactions
- indeed many of our theories have interactions in them
- relatively simple to interpret once you have done it a few times

The down side...

- Fixed, random or mixed?
- They can get HUGE fast

