Mixed ANOVA

Psychology 3256

Introduction

- So far we have talked about
- simple between and within
- factorial between and within
- What about combinations?
- Why of course, let's!

Ummm, why?

- There are cases when we might want one or more between and one or more within
- say oh, species and learning
- sex differences
- etc

An example

	5 min	I hr	24 hr
Implicit	GI	GI	GI
Explicit	G 2	G 2	G 2

- There may be some concern about the implicit test being contaminated
- We still want a decay function

What are the sources of variation?

- test type
- retention interval
- subjects(test type)

	5 min	I hr	24 hr
I	GI	GI	GI
E	G 2	G 2	G 2

- "subjects nested with in test

$$
G I=S I-S I O G 2=S I I-S 20
$$ type"

Build the ANOVA table

- How do you know what to test with what?
- Yates’ order says use the first term below with
subjects and the variable we want

SV	df
test	I (test-I)
S(test)	$\mathrm{I} 8(\mathrm{n}-\mathrm{I})$ test
RI	2 (ri-I)
RIxTest	$2($ ri-I)(Test-I)
RIxS(Test)	36 (ri-I)(n-I)(test)
TOTAL	$59 \mathrm{~N}-\mathrm{I}$

To review

- Between
- Subjects
- Within
- Do the interactions
- Then just figure out the error terms
- This assumes everything is fixed and subjects are random

Another example (n=5)

	BI	BI	B2	B2	B3	B3
	Cl	C2	Cl	C2	Cl	C2
AI	erg+>	agl	GI	GI	GI	GI
A2	G2	G2	G2	G2	G2	G2

sv	df	test
A	(a-1) $=1$	S(A)
S(A)	$(\mathrm{n}-\mathrm{l}) \mathrm{a}=8$	
C	$(\mathrm{c}-1)=1$	CS(A)
CA	$(c-1)(\mathrm{a}-1)=1$	CS(A)
$\operatorname{CS}(\mathrm{A})$	$(\mathrm{c}-\mathrm{l})(\mathrm{n}-1) \mathrm{a}=8$	
B	$(b-1)=2$	$\mathrm{BS}(\mathrm{A})$
BA	$(b-1)(\mathrm{a}-1)=2$	$\mathrm{BS}(\mathrm{A})$
BS(A)	$(b-1)(n-1) a=16$	
BC	$(\mathrm{b}-1)(\mathrm{c}-1)=2$	BCS(A)
BCA	$(b-1)(c-1)(a-1)=2$	BCS(A)
$\operatorname{BCS}(\mathrm{A})$	$(b-1)(c-1)(n-1) a=16$	
TOTAL	$\mathrm{N}-\mathrm{l}=59$	

Yet another one...

	Cl	Cl	C 2	C2	C3	C3
	Al	A2	Al	A2	AI	A2
BI	GI	G3	GI	G3	GI	G3
B2	ergrc	$\overline{\mathrm{up}}$	G2	G4	G2	G4

SV	df	test
A	$\mathrm{a}-\mathrm{I}=\mathrm{I}$	$\mathrm{S}(\mathrm{AB})$
B	$\mathrm{b}-\mathrm{I}=\mathrm{I}$	$\mathrm{S}(\mathrm{AB})$
AB	$(\mathrm{a}-\mathrm{I})(\mathrm{b}-\mathrm{I})=\mathrm{I}$	$\mathrm{S}(\mathrm{AB})$
$\mathrm{S}(\mathrm{AB})$	$(\mathrm{n}-\mathrm{I}) \mathrm{ab}=20$	
C	$\mathrm{c}-\mathrm{I}=2$	$\mathrm{CS}(\mathrm{AB})$
CA	$(\mathrm{a}-\mathrm{I})(\mathrm{c}-\mathrm{I})=2$	$\mathrm{CS}(\mathrm{AB})$
CB	$(\mathrm{b}-\mathrm{I})(\mathrm{c}-\mathrm{I})=2$	$\mathrm{CS}(\mathrm{AB})$
CAB	$(\mathrm{a}-\mathrm{I})(\mathrm{b}-\mathrm{I})(\mathrm{c}-\mathrm{I})=2$	$\mathrm{CS}(\mathrm{AB})$
$\mathrm{CS}(\mathrm{AB})$	$(\mathrm{c}-\mathrm{I})(\mathrm{n}-\mathrm{I}) \mathrm{ab}=40$	
TOTAL	$\mathrm{N}-\mathrm{I}=7 \mathrm{I}$	

