Analysis of Variance

Psychology 3256

Introduction

- We have t and z tests to deal with differences with one or two groups
- what if we have more than two groups?

an example

	Al	A2	A3
	85	67	52
	90	80	60
\bar{x}	84	75	65
	74	59	

Why do the scores vary?

- Or, what are the sources of variation
- Well individual difference
- and of course group differences

I never said there'd be no math..

- any score $=$ being human + group differences
+ individual difference
- $x=\mu+\tau+\varepsilon$

The structural model of ANOVA

Let's make an

assumption

$$
\begin{aligned}
& \mu_{1}=\mu_{2}=\mu_{3}=\ldots=\mu_{k} \\
& \therefore \sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=\ldots=\sigma_{k}^{2} \\
& H_{0} \text { true }
\end{aligned}
$$

- This is the null hypothesis assumption

More assumptions

- Scores are randomly and normally distributed around the grand mean
- independent observations
- all sources of variation are in the model

Let's look at variance

$$
\begin{aligned}
& \sigma_{1}^{2} \approx s_{1}^{2} \\
& \sigma_{2}^{2} \approx s_{2}^{2} \\
& \text { etc } \\
& \sigma_{\varepsilon}^{2} \approx s^{2}=\bar{s}_{j}=\sum \frac{s_{j}^{2}}{k}
\end{aligned}
$$

Remember, by the CLT

$$
\begin{aligned}
& \operatorname{var}(\bar{x})=\sigma^{2} / n \\
& \therefore s_{\bar{x}}^{2}=\sigma_{\varepsilon}^{2} / n \\
& s_{\bar{x}}^{2} n=\sigma_{\varepsilon}^{2}
\end{aligned}
$$

We now have two

estimates of σ_{ε}^{2}

$$
s_{x}^{2} n=\sum \frac{s_{j}^{2}}{k}=\sigma_{\varepsilon}^{2}
$$

$\mathrm{MS}_{\text {Treat }}$
MSError

So, if Ho is true..

- $\mathrm{E}(\mathrm{MSE})=\sigma_{\varepsilon}^{2}$
- $\mathrm{E}(\mathrm{MST})=\sigma_{\varepsilon}^{2}$

If Ho is not true

- $\mathrm{E}(\mathrm{MSE})=\sigma_{\varepsilon}^{2}$
- $\mathrm{E}(\mathrm{MST})=\sigma_{\varepsilon}^{2}+n \sigma_{\tau}^{2}$
- $\mathrm{E}(\mathrm{MSE})<\mathrm{E}(\mathrm{MST})$

SO...

- If we were to divide MST by MSE (MST/MSE) we would have some estimate of how much extra variation MST is measuring
- i.e. τ
- This is precisely what is done in ANOVA

The F word

- $F=$ MST / MSE
- $\mathrm{E}(\mathrm{F} \mid \mathrm{Ho}$ true) ?
- $\mathrm{E}(\mathrm{F} \mid \mathrm{Ha}$ true) ?

The F word

- If Ho is true, then MST/MSE will be distributed as $\mathrm{F}\left(\mathrm{df}_{\mathrm{t}}, \mathrm{df}_{\mathrm{e}}\right)$
- if not it will be distributed some other way
- i.e. it will be unlikely to be distributed that way, or $\mathrm{p}<.05$ (or whatever your alpha is)

Partitioning SS and df

- SSTotal $=$ SSTreatment + SSError
- dfTotal $=$ dfTreatment + dfError

More Precisely..

$$
\frac{\sum\left(x-\bar{x}_{g}\right)^{2}}{N-1}=n \frac{\sum\left(\bar{x}_{j}-\bar{x}_{g}\right)^{2}}{k-1}+\frac{\sum \sum\left(x-\bar{x}_{j}\right)^{2}}{N-k}
$$

ANOVA Summary

Table

Source of Variation	df	MS	F
Between Groups	k-I	SSBG/k-I	MSBG/ MSWG
Within Groups	N-k	SSWG/N-k	
TOTAL	N-I		

Conclusions

- Easy to do
- Only tells you that two means are different, not which two, or three or whatever
- It's about the pattern overall
- You can figure that out, we'll do that next week.

