Exploratory Data Analysis

Psychology 3256

Introduction

- If you are going to find out anything about a data set you must first understand the data
- Basically getting a feel for you numbers
- Easier to find mistakes
- Easier to guess what actually happened
- Easier to find odd values

Introduction

- One of the most important and overlooked part of statistics is Exploratory Data Analysis or EDA
- Developed by John Tukey
- Allows you to generate hypotheses as well as get a feel for you data
- Get an idea of how the experiment went without losing any richness in the data

Hey look, numbers!

X (the value)	f (frequency)
10	1
23	2
25	5
30	2
33	1
35	1

Frequency tables make stuff easy

- 10(1)+23(2)+25(5)+30(2)+33(1)+35(10
- = 309

Relative Frequency Histogram

- You can use this to make a relative frequency histogram
- Lose no richness in the data
- Easy to reconstruct data set
- Allows you to spot oddities

Relative Frequency Histogram

Categorical Data

- With categorical data you do not get a histogram, you get a bar graph
- You could do a pie chart too, though I hate them (but I love pie)
- Pretty much the same thing, but the x axis really does not have a scale so to speak
- So say we have a STAT 2126 class with 38 Psych majors, 15 Soc, 18 CESD majors and five Bio majors

Like this

STAT 2126

Quantitative Variables

- So with these of course we use a histogram
- We can see central tendency
- Spread
- shape

Skewness

Negative Skew
Elongated tail at the left More data in the left tail than would be expected in a normal would be expected in a normal distribution

Kurtosis

- Leptokurtic means peaked
- Platykurtic means flat

More on shape

- A distribution can be symmetrical or asymmetrical
- It may also be unimodal or bimodal
- It could be uniform

An example

- Number of goals scored per year by Mario Lemieux
- 43485470854519 4469176950356 2817
- A histogram is a good start, but you probably need to
 group the values

Mario could sorta play

Goals Per Season

- Wait a second, what is with that 90 ?
- Labels are midpoints, limits are 5-14 ... 85-94
- Real limits are 85.5-94.5

Careful

- You have to make sure the scale makes sense
- Especially the Y axis
- One of the problems with a histogram with grouped data like this is that you lose some of the richness of the data, which is OK with a big data set, perhaps not here though

Stem and Leaf Plot

0	1	6	7	
1	7	9		
2	8			
3	5			
4	3	4	5	8
5	0	4		
6	9	9		
7	0			
8	5			

- This one is an ordered stem and leaf
- You interpret this like a histogram
- Easy to sp ot outliers
- Preserves data
- Easy to get the middle or $50^{\text {th }}$ percentile which is 44 in this case

The Five Number Summary

- You can get other stuff from a stem and leaf as well
- Median
- First quartile (17.5 in our case)
- Third quartile (61.5 here)
- Quartiles are the 25th and 75th percentiles
- So halfway between the minimum and the median, and the median and the maximum

You said there were five numbers..

- Yeah so also there is the minimum 1
- And the maximum, 85
- These two by the way, give you the range
- Now you take those five numbers and make what is called a box and whisker plot, or a boxplot
- Gives you an idea of the shape of the data

And here you go...

and it continues

- We talked about the central tendency of a distribution
- This is one of the three properties necessary to describe a distribution
- We can also talk about the shape
- You know that kurtosis stuff and all of that

An Example

- Consider...
- 1592030
- 1112131415
- Both have the same mean (13)
- They both sum to 65 , then divide 65 by 5 , you get 13

The same, but different...

- 1592030
- 1112131415
- So, they both have the same mean, and both are symmetrical
- How are they different?
- Well the one on the top is much more spread out

Spread

- Well how could we measure spreadoutedness?
- Well the range is a start
- 1-30 vs 11-15
- Seems pretty crude
- We could look at the IQD
- Still pretty crude

We need something better

- Something that is kind of like a mean really
- Like the average amount that the data are spread out
- Well why not do that?

Well here's why not

$$
\begin{aligned}
& \sum \frac{(x-\bar{x})}{n}=\frac{(1-13)+(5-13)+(9-13)+(20-13)+(30-13)}{5} \\
& =\frac{-12+(-8)+(-4)+7+17}{5} \\
& =\frac{0}{5}
\end{aligned}
$$

Hmm

- They will ALWAYS sum to zero
- Makes sense when you think about it
- If the mean is the balancing point, there should be as much mass on one side as the other
- So how do we get rid of negatives?
- Absolute value!

The Mean Absolute Deviation

$$
\begin{aligned}
& \sum \frac{|(x-\bar{x})|}{n}=\frac{|(1-13)|+|(5-13)|+|(9-13)|+|(20-13)|+|(30-13)|}{5} \\
& =\frac{12+8+4+7+17}{5} \\
& =\frac{48}{5} \\
& =9.6
\end{aligned}
$$

Cool!

- Well sometimes things you think are cool, well they aren't
- Mullets for example...
- Anyway, for our purposes the MAD is just not that useful
- It is, in the type of stats we will do, a dead end
- Too bad, as it has intuitive appeal

There has to be another way

- Well of course there is or we would end now...
- OK, how else can we get rid of those nasty negatives?
- Square the deviations
- (you know, $-9^{2}=81$ for example)

We are getting closer...

$$
\begin{aligned}
& \sum \frac{(x-\bar{x})^{2}}{n}=\frac{(1-13)^{2}+(5-13)^{2}+(9-13)^{2}+(20-13)^{2}+(30-13)^{2}}{5} \\
& =\frac{(-12)^{2}+(-8)^{2}+(-4)^{2}+7^{2}+17^{2}}{5} \\
& =\frac{144+64+16+49+289}{5} \\
& =112.4
\end{aligned}
$$

Hmmmm

- 112.4 , seems like a mighty big number
- Well it is in squared units not in the original units
- What is the opposite of squaring something?
- Square root
- 10.6

There is a little problem here

- The formula I have shown you so far, has n on the bottom
- Yeah I know that just makes sense.
- In fact, it is supposed to be n-1
- We want something that will be an unbiased estimator of the same quantity in the population

Variance and standard deviation

- The population parameters, variance and the standard deviation have N on the bottom
- The sample statistics used to estimate them have n -1
- If they had n, they would underestimate the population parameters

Sample statistics

$$
\begin{aligned}
s^{2} & =\sum \frac{(x-\bar{x})^{2}}{n-1} \\
s & =\sqrt{\sum \frac{(x-\bar{x})^{2}}{n-1}}
\end{aligned}
$$

So in our case

$$
\begin{aligned}
& s=\sqrt{\sum \frac{(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{(1-13)^{2}+(5-13)^{2}+(9-13)^{2}+(20-13)^{2}+(30-13)^{2}}{4}} \\
& =\sqrt{\frac{(-12)^{2}+(-8)^{2}+(-4)^{2}+7^{2}+17^{2}}{4}} \\
& =\sqrt{\frac{144+64+16+49+289}{4}} \\
& =\sqrt{140.5} \\
& =11.85
\end{aligned}
$$

For the Population

$$
\begin{aligned}
& \sigma^{2}=\sum \frac{(X-\mu)^{2}}{N} \\
& \sigma=\sqrt{\sum \frac{(X-\mu)^{2}}{N}}
\end{aligned}
$$

How are the variance and sd affected by extreme scores?

- 1592030
- $s=11.85$
- OK let's throw in a new number, say 729
- 1592030729
- Our new mean is 132.33
- Our new variance is 85555.067
- Our new standard deviation is 292.50
- Well the mean is affected by extreme scores, so of course so is the sd

How can we use this to our advantage?

- coefficient of variation
- Katz et al (1990)
- study mean 69.6 sd 10.6
- no study mean 46.6 sd 6.8
- one could conclude there is more variation with studying
- however the cvs are .152 and .146 respectively
- sd / mean

A couple of key points

- Remember, we want to learn about populations not samples
- we estimate population parameters with sample statistics
- we want unbiased estimators of parameters

Transformations

$$
\begin{aligned}
& E(x+k)=\bar{x}+k \\
& \operatorname{var}(x+k)=s_{x}^{2} \\
& E(x k)=\bar{x} k \\
& \operatorname{var}(x k)=s_{x}^{2} k^{2}
\end{aligned}
$$

