Hypothesis Testing

Psychology 3256

Introduction

- There are three things we need to say that we have a causal relationship
- Temporal precedence
- Elimination of alternative explanations
- Covariation
- the first two can be easily dealt with through design

Some made up data

	Group I	Group 2
	57	72
	66	62
	60	64
	73	79
	75	81
Mean	66.2	71.6
sd	7.85	8.56

Question...

We just made a decision

- If the chance is relatively small, usually less than five percent, we say it is unlikely our difference happened by chance alone and we therefore have a statistically significant effect
- Without significance we have no covariation of x and y and therefore no causation

We set up two, mutually exclusive hypotheses

- H₀ the null hypothesis
- Ha the alternative hypothesis

Errors in Hypothesis Testing

	● H ₀ True	• H _a True
Do Not Reject H ₀	Correct Decision	Type II Error
Reject H ₀	Type I Error	Correct Decision

We have some control

- We set the probability of a type I error, usually at .05
- This is called α
- The probability of a type II error depends on n, σ and α (this is called β)
- I-β is a correct rejection or Power

What should we set α at?

- Well, .05 of course...
- Just because of Fisher
- we might want to be more flexible
- e.g. p<.0504 "Do not discuss non significant results!"